Indian Statistical Institute, Bangalore Centre M.Math I Year, Second Semester Solution set of Mid-Sem Examination 2012 Functional Analysis

1. Let $(\mathcal{H}, \langle, \rangle)$ be a Hilbert space. A map $B : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ is said to be sesquilinear iff it is linear in the first variable and conjugate linear in the second variable. Define

$$||B|| := \sup_{||x|| \le 1, ||y|| \le 1} |B(x, y)|.$$

Say that B is bounded if $||B|| < \infty$; is symmetric if $B(x, y) = \overline{B(y, x)}$; is non-negative if B(x, x) = 0 implies x = 0.

- (a) If B is bounded, show that there exists a unique bounded linear operator A on H such that $B(x, y) = \langle x, Ay \rangle$ and that ||B|| = ||A||.
- (b) Verify that if B is symmetric, non-negative and definite then B defines an inner product on H.
- (c) If B is symmetric and non-negative, show that the Schwartz inequality holds: for every $x, y \in H$,

$$|B(x,y)|^2 \le B(x,x)B(y,y).$$

Proof. (a) For each $y \in \mathcal{H}$, define the map $B_y : \mathcal{H} \to \mathbb{C}$ by

$$B_y(x) = B(x, y)$$

for each $x \in \mathcal{H}$. Since $B(\alpha x_1 + x_2, y) = \alpha B(x_1, y) + B(x_2, y)$, B_y is a linear map. From the definition of ||B||, we can write for $x, y \in \mathcal{H}$

$$|B(x,y)| \le ||B|| ||x|| ||y||$$

which implies that B_y is bounded and $||B_y|| \leq ||B|| ||y||$. Since B_y is a bounded linear functional on the Hilbert space \mathcal{H} , there exists a unique $\tilde{y} \in \mathcal{H}$ such that $(B(x, y) =)B_y(x) = \langle x, \tilde{y} \rangle$ and $||B_y|| = ||\tilde{y}||$. Because for each $y \in \mathcal{H}$ we are able to associate a unique $\tilde{y} \in \mathcal{H}$ we can define a map $A : \mathcal{H} \to \mathcal{H}$ by the

Kalpesh Haria

relation $Ay = \tilde{y}$. Since *B* is sesquilinear, $A : \mathcal{H} \to \mathcal{H}$ is a linear map. Further $(\|\tilde{y}\| =)\|Ay\| = \|B_y\| \le \|B\|\|y\|$ implies *A* is bounded and $\|A\| \le \|B\|$. For each $x, y \in \mathcal{H}$

$$|B(x,y)| = |\langle x, Ay \rangle| \le ||x|| ||Ay||$$

implies that $||B|| \le ||A||$. Thus ||B|| = ||A||.

- (b) Define $\langle x, y \rangle := B(x, y)$. Since *B* is non-negative and definite, $\langle x, x \rangle \ge 0$ and equality holds iff x = 0. From the sesquilinearity of *B* the inner product \langle, \rangle is linear in the first variable. Further, $\langle x, y \rangle = \overline{\langle y, x \rangle}$ holds for $x, y \in \mathcal{H}$ because *B* is symmetric. Hence *B* defines an inner product on \mathcal{H} .
- (c) Let $x, y \in \mathcal{H}$ and $\lambda \in \mathbb{C}$. Then using properties of B, we have

$$0 \le B(x - \lambda y, x - \lambda y) = B(x, x) - 2Re(\overline{\lambda}B(x, y)) + |\lambda|^2 B(y, y).$$

In particular, set $\lambda = \frac{B(x,y)}{\alpha}$ for $\alpha > 0$ so that

$$0 \le B(x,x) - \frac{1}{\alpha} \left(2 - \frac{B(y,y)}{\alpha}\right) |B(x,y)|^2.$$

If $B(y, y) \neq 0$, then take $\alpha = B(y, y)$ to get the Schwartz inequality. If B(y, y) = 0, then

$$0 \le 2|B(x,y)|^2 \le \alpha B(x,x)$$

for all $\alpha > 0$, and which forces B(x, y) = 0 (in this case the Schwartz inequality holds trivially).

2. Let M_n be the space of $n \times n$ matrices over \mathbb{C} , considered as bounded linear operators on \mathbb{C}^n . Let $GL_n(\mathbb{C})$ be the group of $n \times n$ invertible matrices and let U be an open subset of $GL_n(\mathbb{C}) \subset M_n$. Define $J : U \to M_n$ by $J(A) := A^{-1}$. Show that J is Frechet differentiable at all $A \in U$ and that if $H \in M_n$ then $J'(A)H = -A^{-1}HA^{-1}$.

Proof. The map $J: U \to M_n$ is said to be Frechet differentiable at $A \in U$, if there exists a bounded linear operator $J'(A): M_n \to M_n$ such that

$$\lim_{\|H\|\to 0} \frac{\|J(A+H) - J(A) - J'(A)(H)\|_{M_n}}{\|H\|_{M_n}} = 0.$$

Let $H \in M_n$ be such that ||H|| sufficiently small and $||A^{-1}|| ||H|| < 1$ (which implies $||A^{-1}H|| < 1$). Then $I + A^{-1}H$ is invertible and we use this fact in the following expression:

$$J(A + H) = (A + H)^{-1} = (A(I + A^{-1}H))^{-1} = (I + A^{-1}H)^{-1}A^{-1}$$

= $\sum_{k=0}^{\infty} (-1)^k (A^{-1}H)^k A^{-1}$
= $A^{-1} - A^{-1}HA^{-1} + \sum_{k=2}^{\infty} (-1)^k (A^{-1}H)^k A^{-1}$
= $J(A) - A^{-1}HA^{-1} + \sum_{k=2}^{\infty} (-1)^k (A^{-1}H)^k A^{-1}.$

Thus

$$\begin{split} \|J(A+H) - J(A) - (-A^{-1}HA^{-1})\| &= \|\sum_{k=2}^{\infty} (-1)^k (A^{-1}H)^k A^{-1}\| \\ &\leq \sum_{k=2}^{\infty} \|(-1)^k (A^{-1}H)^k A^{-1}\| \\ &\leq [\|A^{-1}\|^2 \|H\|^2 \|A^{-1}\|] \sum_{k=0}^{\infty} [\|A^{-1}\|\|H\|]^k \\ &\leq [\|A^{-1}\|^2 \|H\|^2 \|A^{-1}\|] \left(\frac{1}{1 - \|A^{-1}\|\|H\|}\right). \end{split}$$

If we take $||H|| \to 0$ both sides in the above inequality, then

$$\lim_{\|H\|\to 0} \|J(A+H) - J(A) - (-A^{-1}HA^{-1})\| = 0.$$

Hence we have proved the required result.

3. Let $(V, \|.\|)$ be a Banach space and X = C([0, 1], V) the space of continuous functions from [0, 1] with values in V. For $f \in X$, define $\|f\|_X := \sup_{t \in [0, 1]} \|f(t)\|$. Show that $\|.\|_X$ is well defined and is a norm on X. Show that $(X, \|.\|_X)$ is a Banach space.

Proof. First we prove that $\|.\|$ is well-defined. Let $f \in X$. Since the image of a compact set under a continuous map is compact and a compact subset of any norm linear space is bounded (in fact totally bounded), $\sup_{t \in [0,1]} \|f(t)\|$ is a finite number

Kalpesh Haria

for $f \in X$. Thus $\|.\|_X$ is well defined. Let $f, g, h \in X$ and $\alpha \in \mathbb{C}$.

1. Clearly $||f||_X \ge 0$ and if $||f||_X = 0$, then f(t) = 0 for each $t \in [0, 1]$, i.e., f = 0.

2.

$$\begin{aligned} \|\alpha f\|_X &= \sup_{t \in [0,1]} \|(\alpha f)(t)\| = \sup_{t \in [0,1]} \|(\alpha (f(t)))\| = \sup_{t \in [0,1]} |\alpha| \|f(t)\| \\ &= |\alpha| \sup_{t \in [0,1]} \|f(t)\| = |\alpha| \|f\|_X. \end{aligned}$$

3.

$$\begin{split} \|f + g\|_X &= \sup_{t \in [0,1]} \|(f + g)(t)\| \\ &= \sup_{t \in [0,1]} \|(f(t) + g(t)\| \\ &\leq \sup_{t \in [0,1]} [\|(f(t) + h(t)\| + \|(h(t) + g(t)\|] \quad (\because V \text{ is a normed linear space.}) \\ &\leq \sup_{t \in [0,1]} \|(f(t) + h(t)\| + \sup_{t \in [0,1]} \|(h(t) + g(t)\| \\ &= \|f + h\|_X + \|h + g\|_X. \end{split}$$

Let $\{f_n\}$ be a Cauchy sequence in X. Then for each $\epsilon > 0$ there is a positive integer N such that

$$||f_n(t) - f_m(t)|| \le ||f_n - f_m||_X \le \epsilon$$
(1)

for all $n, m \ge N, t \in [0, 1]$. Thus $\{f_n(t)\}$ is a Cauchy sequence in the Banach space V. So it is convergent for each $t \in [0, 1]$. Define $f(t) = \lim_{n \to \infty} f_n(t)$ for $t \in [0, 1]$. Taking $m \to \infty$ in equation (1) we have, for all $n \ge N$

$$\sup_{t \in [0,1]} \|f_n(t) - f(t)\| \le \epsilon$$
(2)

Our next aim to show $f \in X$. Let $t_0 \in [0, 1]$. Since f_N is continuous at t_0 , for $\epsilon > 0$ (same as above) there is a $\delta > 0$ such that

$$||f_N(t) - f_N(t_0)|| < \epsilon \text{ whenever } |t - t_0| < \delta.$$
(3)

Now using equations (2) and (3) we get the following:

$$\|f(t) - f(t_0)\| \le \|f(t) - f_N(t)\| + \|f_N(t) - f_N(t_0)\| + \|f_N(t_0) - f(t_0)\| < 3\varepsilon \quad (4)$$

whenever $|t - t_0| < \delta$. Thus f is a continuous function on [0, 1] as $t_0 \in [0, 1]$ arbitrary. So $f \in X$ and from equation (2) we can write $||f_n - f||_X \le \epsilon$ for all $n \ge N$. Hence we have proved that $(X, ||.||_X)$ is a Banach space.

- 4. Let V be a normed linear space and V^{*} its dual. For any subspace $Z \subset V^*$ and $f \in V^*$ define $d(f, Z) := \inf_{g \in Z} ||f g||_{V^*}$. Let $W \subset V$ be a subspace and define $W^{\perp} := \{g \in V^* : g(x) = 0, \forall x \in W\}.$
 - (a) Show that W^{\perp} is a closed subspace of V^* .
 - (b) Let $f \in V^*$. Show that $d(f, W^{\perp}) = ||f_0||_{W^*}$, where $f_0 \in W^*$ is the restriction of $f \in V^*$ to W.

Proof. (a) Let $g_1, g_2 \in W^{\perp}$ and $\alpha \in \mathbb{C}$. Then for all $x \in W$, we have

$$(\alpha g_1 + g_2)(x) = \alpha g_1(x) + g_2(x) = 0.$$

Thus $\alpha g_1 + g_2 \in W^{\perp}$. This shows that W^{\perp} is a subspace of V^* . Let $\{g_n\}$ be a sequence in W^{\perp} and $g_n \to f$ in V^* . Then

$$|g_n(x) - f(x)| = |(g_n - f)(x)| \le ||g_n - f|| ||x|| \to 0$$

as $n \to \infty$ for all $x \in V$. If $x \in W^{\perp}$, then $g_n(x) = 0$ for all n; hence f(x) = 0. Thus $f \in W^{\perp}$. It means that W^{\perp} is closed in V^* .

(b) Let $f \in V^*$. Define $f_0 = f|_W$ as the restriction of f to W. Since g(x) = 0 for all $g \in W^{\perp}$,

$$f_0 = (f - g)|_W$$
 for all $g \in W^{\perp}$.

Then $||f_0||_{W^*} = ||(f-g)|_W||_{W^*} \le ||f-g||_{V^*}$ for all $g \in W^{\perp}$. Thus

$$\|f_0\|_{W^*} \le \inf_{g \in W^\perp} \|f - g\|_{V^*}.$$
(5)

Next we prove the above inequality in other way. By the Hahn-Banach extension theorem there exists an element $h \in V^*$ such that $f_0 = h|_W$ and $||h||_{V^*} = ||f_0||_{W^*}$.

Note that for $x \in W$ we have $(f - h)(x) = f(x) - h(x) = f_0(x) - f_0(x) = 0$. Then $f - h \in W^{\perp}$. Using this fact we get the following:

$$\inf_{g \in W^{\perp}} \|f - g\|_{V^*} \le \|f - (f - h)\|_{V^*} = \|h\|_{V^*} = \|f_0\|_{W^*}.$$
(6)

Hence required result follows from (5) and (6), namely

$$d(f, W^{\perp}) = \|f_0\|_{W^*}.$$

5. Let V be a normed linear space. Show that finite dimensional subspaces of V can be complemented, i.e., if $W \subset V$ is finite dimensional, then there exists a closed subspace $Z \subset V$ such that $V = W \oplus Z$.

Proof. Assume that dim W = n. Let $\{e_1, e_2, \ldots, e_n\}$ be a basis of W. Then each $x \in W$ we can write as

$$x = \alpha_1(x)e_1 + \alpha_2(x)e_2 + \ldots + \alpha_n(x)e_n$$

where $\alpha_j(x)$'s are scalars depend on $x \in W$. Using these scalars, we define linear functional $\alpha_j : W \to \mathbb{C}$ for each j = 1, ..., n. Since W is finite dimensional, α_j is bounded for each j = 1, ..., n. Observe that $\alpha_j(e_i) = \delta_{ij}$ for each i, j = 1, ..., n. By Hahn-Banach extension theorem there exists an extension $f_j \in V^*$ of $\alpha_j \in W^*$ for each j = 1, ..., n. Define the map $P : V \to V$, for $x \in V$

$$P(x) = f_1(x)e_1 + f_2(x)e_2 + \ldots + f_n(x)e_n$$

Since f_j is a linear map for each j = 1, ..., n, P is also a linear map. For $x \in V$, we have

$$\begin{aligned} \|P(x)\| &= \|f_1(x)e_1 + f_2(x)e_2 + \ldots + f_n(x)e_n\| \\ &\leq |f_1(x)|\|e_1\| + |f_2(x)|\|e_2\| + \ldots + |f_n(x)|\|e_n\| \\ &\leq \|f_1\|\|x\|\|e_1\| + \|f_2\|\|x\|\|e_2\| + \ldots + \|f_n\|\|x\|\|e_n\| \\ &\leq [\|f_1\| + \|f_2\| + \ldots + \|f_n\|] (\max_{1 \le j \le n} \|e_j\|) \|x\|| = K \|x\| \end{aligned}$$

Kalpesh Haria

where $K = [||f_1|| + ||f_2|| + \ldots + ||f_n||] \max_{1 \le j \le n} ||e_j||$. So P is a bounded linear operator. Note that

$$P(e_j) = f_1(e_j)e_1 + f_2(e_j)e_2 + \dots + f_n(e_j)e_n$$

= $\alpha_1(e_j)e_1 + \alpha_2(e_j)e_2 + \dots + \alpha_n(e_j)e_n = e_j$

where in the last equality we have used the fact $\alpha_j(e_i) = \delta_{ij}$. We claim that P is the projection on to W. For that we need to show $P^2 = P$ and $\operatorname{Ran} P = W$. Let $x \in V$.

$$P^{2}(x) = P(f_{1}(x)e_{1} + f_{2}(x)e_{2} + \ldots + f_{n}(x)e_{n})$$

= $f_{1}(x)P(e_{1}) + f_{2}(x)P(e_{2}) + \ldots + f_{n}(x)P(e_{n})$
= $f_{1}(x)e_{1} + f_{2}(x)e_{2} + \ldots + f_{n}(x)e_{n} = P(x)$

Thus $P^2 = P$. By the definition of P it is clear that $\operatorname{Ran} P = W$. So P is the projection on to W. Take $Z = \ker P(=\operatorname{Ran}(I-P))$. Then $W \cap Z = \{0\}$. For any $x \in V$ is written as $x = Px + (I-P)x \in W + Z$. Hence $V = W \oplus Z$.